AP Calculus AB Chapter 4, Section 4

The Fundamental Theorem of Calculus
2013-2014

The Fundamental Theorem of Calculus

- Discovered independently by Isaac Newton and Gottfried Leibniz
- Basically says that derivatives and integrals are inverses of each other, much like multiplication and division.
- While we find the derivative of a function to be defined as $\frac{\Delta y}{\Delta x}$, we inversely say the area under the curve (since we use rectangles) is $\Delta y \Delta x$.

The Fundamental Theorem of Calculus

- If a function f is continuous on the closed interval [a, b] and F is an antiderivative of f on the interval $[\mathrm{a}, \mathrm{b}]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

- It is not necessary to include the addition of "c" when finding the antiderivative since they will just cancel out when you subtract the functions.

Evaluate the definite integral

$$
\int_{1}^{2}\left(x^{2}-3\right) d x
$$

Evaluate the definite integral

$$
\int_{1}^{4} 3 \sqrt{x} d x
$$

Evaluate the definite integral

$$
\int_{0}^{\pi / 4} \sec ^{2} x d x
$$

A definite integral involving Absolute Value

- Evaluate $\int_{0}^{2}|2 x-1| d x$

Using the Fundamental Theorem to Find Area

- Find the area of the region bounded by the graph of $y=2 x^{2}-3 x+2$, the x-axis, and the vertical lines $\mathrm{x}=0$ and $\mathrm{x}=2$.

Finding the Area of a Region

- Find the area of the region bounded by the graphs of the following equations: $y=x^{3}+x, x=2, y=0$

Mean Value Theorem for Integrals

- The mean value theorem for integrals implies that somewhere in the interval of the integral, there is a point that if you made a rectangle that includes that point, the area of that rectangle would be the area under the curve.

Mean Value Theorem for Integrals

- If f is continuous on the closed interval $[a, b]$, then there exists a number c in the closed interval $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

- Can be referred to as the MVTI

Using Mean Value Theorem for Integrals

- Find the value(s) of c guaranteed by the Mean Value Theorem for Integrals for the function over the given interval.

$$
f(x)=\frac{x^{2}}{4}, \quad[0,6]
$$

Average Value of a Function

- The value $f(c)$ given in the MVT for Integrals is called the average value of f on the interval $[a, b]$
- If f is integrable on the closed interval [a, b], then the average value of f on the interval is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Finding the Average Value of a Function

- Find the average value of $f(x)=3 x^{2}-2 x$ on the interval [1, 4].

The Second Fundamental Theorem of Calculus

- If $f(x)$ is continuous on $[a, b]$, then the derivative of the function $F(x)=\int_{a}^{x} f(t) d t$ is:

$$
\frac{d F}{d t}=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Khan Academy Video

- Integral Calculus
- https://www.khanacademy.org/math/integral-calculus/indefinite-definite-integrals/fundamental-theorem-of-calculus/v/fundamental-theorem-of-calculus

Second Fundamental Theorem of Calculus:

 Chain Rule- Sometimes the chain rule has to be applied to the second fundamental theorem of Calculus:

$$
\frac{d}{d x}\left[\int_{a}^{u(x)} f(t) d t\right]=f[u(x)] \cdot u^{\prime}(x)
$$

Khan Academy Video

- Integral Calculus
- https://www.khanacademy.org/math/integral-calculus/indefinite-definite-integrals/fundamental-theorem-of-calculus/v/applying-the-fundamental-theorem-ofcalculus

Practice

- Find the derivative of $F(x)=\int_{\pi / 2}^{x^{3}} \cos t d t$

Apply Second Fundamental Theorem

- If $F(x)=\int_{0}^{x^{2}} \sqrt{t+3} d t$, what is $F^{\prime}(x)$?
A. $\sqrt{x^{2}+3}$
B. $\frac{1}{2 \sqrt{x^{2}+3}}$
C. $2 x\left(\sqrt{x^{2}+3}\right)$
D. $\frac{2\left(x^{2}+3\right)^{3 / 2}}{3}$
E. None of the above

Ch 4.4 Homework

- Pg. 291-292, \#'s: I - 45 every other odd, 47, 5I, 63

