
|       | <br>4 4 | <br> | O |
|-------|---------|------|---|
|       |         |      |   |
| Nama: | K 1-    |      |   |
| Name: |         |      |   |
|       |         |      |   |

Date:

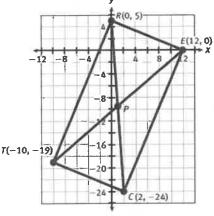
Quadrilateral WXYZ is a rectangle.



1) If ZP = 4x - 9 and PY = 2x + 5, find ZX.

$$ZP = PY$$
  $ZX = 2(ZP)$   
 $4X - 9 = 2X + 5$   $ZX = 2(4(7) - 9)$   
 $2X = 14$   $ZX = 38$ 

2) If  $m \angle ZYW = 2x - 7$  and  $m \angle WYX = 2x + 5$ , find  $m \angle ZYW$ .


$$m \angle z YW + m \angle W YX = 90^{\circ}$$
  
 $2x - 7 + 2x + 5 = 90$ 

$$4x-2=90$$

$$4x=92$$
  $mZZYW=39°$ 

$$x=23$$

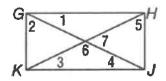
 $m \angle ZYW = 2(23) - 7$ The figure *RECT* is a rectangle.



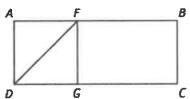
3) What are the coordinates of *P*?

$$P = \frac{0+2}{2}, \frac{5+(-24)}{2}$$

$$P = (1, -\frac{19}{2})$$


4) What is TE? How does that compare to

TE=
$$\sqrt{(12-(-10))^2+(0-(-19))^2}$$
  
TE= $\sqrt{22^2+19^2}=\sqrt{845}=13\sqrt{5}$ 


$$RC = \sqrt{(2-0)^2 + (-24-5)^2}$$

$$RC = \sqrt{2^2 + (-29)^2} = \sqrt{845} = 13\sqrt{5}$$

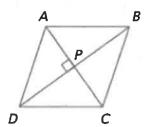
Quadrilateral GHJK is a rectangle. Find each measure if  $m \angle 1 = 43^{\circ}$ .



11) In the diagram, ABCD is a rectangle.  $\overline{DF}$  bisects  $\angle ADC$  and  $\overline{FG} \parallel \overline{AD}$ . Complete this proof that AFGD is a square.



It is given that  $\overline{DF}$  bisects a right angle, so  $m \angle ADF = \underline{45}^{\circ}$ . We know that  $\angle A$  is a right angle because ABCD is a rectangle, so  $\triangle AFD$  is a right triangle. In a right triangle, the acute angles are complementary, so m < AFD = 45°. That means  $\triangle AFD$  is an isosceles triangle, and AF = AD. We know that AFGD is a parallelogram because AF || DG (opposite sides of a rectangle are parallel) and  $\overline{AD} \parallel \overline{FG}$  (Given). We have shown that AFGD is a parallelogram with a right angle and two <u>consecutive</u> <u>congruent</u> sides, so AFGD is a


Name: \_

Date:

12) One student proved that quadrilateral UTAH is a rectangle. Another student proved that UTAH is a rhombus. What else can you prove about UTAH? Explain.

UTAH is a rectangle, so it has all right angles. Also, UTAH is a rhombus, so it has four congruent sides. Therefore, UTAH is a square by the definition of a square.

Quadrilateral ABCD is a rhombus. Find each value or measure.

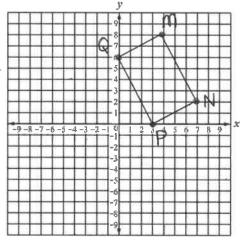


13) If  $m \angle BCD = 114^{\circ}$ , find  $m \angle BAC$ .

14) If AP = 3x - 1 and PC = x + 9, find AC.

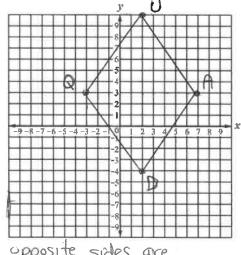
$$3x-1=x+0$$
  
 $2x=10$   
 $x=5$ 

$$AP=PC$$
  $AC=AP+PC$   
 $3x-1=x+9$   $AC=3(5)-1+(5)+9$   
 $2x=10$   $AC=28$ 


15) if  $m \angle ABC = 2x - 7$  and  $m \angle BCD = 2x + 3$ , find  $m \angle DAB$ .

$$m \angle ABC + m \angle BCD = 180$$
  
 $2x - 7 + 2x + 3 = 180$   
 $4x - 4 = 180$   
 $4x = 184$   
 $x = 46$   $m \angle DAB = 95°$ 

16) if  $m \angle BPC = 5x - 15$ , find x.


$$m \angle BPC = 90^{\circ}$$
  
 $5x - 15 = 90$   
 $5x = 105$   
 $X = 21$ 

17) The vertices of quadrilateral MNPQ are M(4,8), N(7,2), P(3,0), and Q(0,6). Show that MNPQ is a rectangle.



consecutive sides are perpendicular slope of am and PN is 1 slope of QP and MN is -2  $m \angle M = m \angle N = m \angle P = m \angle Q = 90^{\circ}$ 

18) The vertices of a quadrilateral are Q(-3,3), U(2,10), A(7,3), and D(2,-4). Show that QUAD is a rhombus.



opposite sides are paralle

Slope of QU and DA = 5 Slope of QD and UA = - = the figure is equilateral: QU = UA = AD = DQ = 173