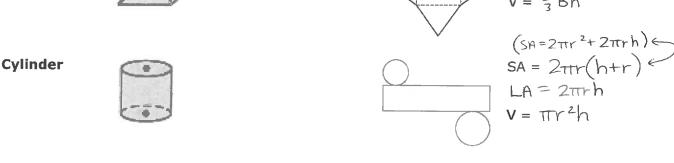

Activity 33 Notes Overview of 3-D Solids


Polyhedra can be classified as <u>prisms</u> or <u>pyramids</u>. A prism has two congruent faces called <u>bases</u> connected by parallelogram faces. A pyramid has a polygonal base and three or more triangular faces that meet at a common vertex. Polyhedra are named by their bases.

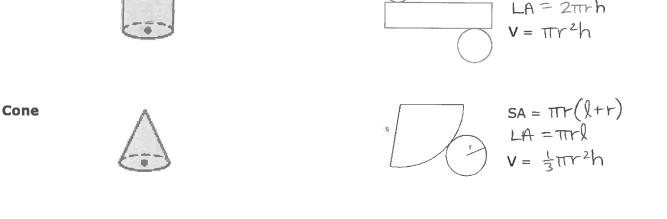
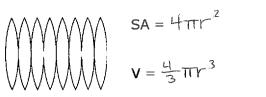
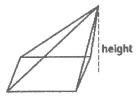
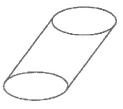

In an <u>oblique prism</u>, the edges of the faces connecting the bases are not perpendicular to the bases. In a <u>right prism</u>, those edges are perpendicular to the bases. (F+V=F+2)

Fig	ure	Example	Euler's Theore	m (F + V	Net	Surface Area and Volume
_	_			/		N



Sphere




$$V = \frac{4}{3} \pi r^3$$

Other solids are a _	cylinder	, which has parallel circular bases connected by a
curved surface, a _	Cone	, which has a circular base connected by a curved
surface to a single	vertex, or a	sphere.

Oblique pyramid

Oblique cylinder

Oblique cone

