For this exam, make sure to look over **all** notes that you have been given, including vocabulary, **all** Extra Practice handouts, Properties of Quadrilaterals, and the Venn diagram showing how different quadrilaterals relate to each other.

Kites

Answer the following questions with always, sometimes, or never.

- 1) The diagonals of a kite are always perpendicular.
- 2) The diagonals of a kite $\underline{\text{Never}}$ bisect each other.
- 3) The diagonals of a kite are <u>never</u> congruent.

In kite MNPQ, \overline{MP} is the perpendicular bisector of \overline{NQ} . If $m \angle NMQ = 88^{\circ}$ and $m \angle MQP = 109^{\circ}$, find each measure.

5) m LNPQ 549

In the following kite, GH = 8 and HR = 6. Find the following measures. Give exact answers.

8)
$$GR$$
 $(GR)^2 = (GH)^2 - (HR)^2$
 $(GR)^2 = 8^2 - 6^2 = 6H - 36$
 $(GR)^2 = 28$
 $QR = \sqrt{28}$
 $QR = 2\sqrt{7}$

Trapezoids

Answer the following questions with always, sometimes, or never.

- 10) The diagonals of an isosceles trapezoid are ______ congruent.
- 11) The opposite angles of an isosceles trapezoid are <u>always</u> supplementary.
- 12) The consecutive angles of a trapezoid are <u>sometimes</u> supplementary. (leg angles)
- 13) In an isosceles trapezoid, the legs are <u>always</u> congruent.

Name: _____

Date: _____

14) *GHJK* is a trapezoid and \overline{PQ} is the median.

If PQ = 4x - 8, GK = 2x, and HJ = 5x - 9, find PQ.

find PQ.
PQ =
$$\frac{1}{2}$$
(GK+HJ)
 $4x-8=\frac{1}{2}(2x+5x-9)$
 $8x-16=7x-9$
 $x=7$
 $PQ=20$

Parallelograms

Answer the following questions with always, sometimes, or never.

- 15) The diagonals of a parallelogram ______ bisect each other.
- 16) The diagonals of a parallelogram are sometimes congruent.
- 17) The opposite angles of a parallelogram are <u>always</u> congruent.
- 18) The opposite sides of a parallelogram are _a\ways___ congruent.

MNPQ is a parallelogram. The diagonals intersect at point R.

19) If MR = 2x - 8 and MP = 3x - 5, what is PR? $PR \stackrel{\frown}{=} \overline{MR}$

20) If $m \angle QMN = 78^{\circ}$, determine $m \angle MNP$, $m \angle NPQ$, and $m \angle PQM$.

21) If MN = 3x - 20 and PQ = 70, find x.

$$MN = PQ$$

$$3x-20=70$$

$$3x=90$$

$$x=30$$
Rhombi

Answer the following questions with always, sometimes, or never.

- 22) The diagonals of a rhombus are <u>always</u> perpendicular and bisect each other.
- 23) The diagonals of a rhombus <u>alway</u> S bisect opposite angles.
- 24) The diagonals of a rhombus are sometimes congruent.
- 25) The sides of a rhombus are always congruent.

In the following rhombus, $m \angle UTA = 75^{\circ}$. Find the missing angle measures.

- ^{27) m∠UPH}90°
- ^{28) m∠UTH} 37.5°
- 29) m∠TAP 52.5°

Rectangles and Squares

Answer the following questions with always, sometimes, or never.

- 30) The diagonals of a rectangle are always congruent.
- 31) The diagonals of a rectangle are <u>Sometimes</u> perpendicular. (square)
- 32) The diagonals of a rectangle always bisect each other.
- 33) The diagonals of a square <u>always</u> bisect each other.
- 34) The opposite sides of a rectangle are always congruent.

Quadrilateral RIGH is a rectangle.

35) If $m \angle RHT = x + 9$ and $m \angle GIT = 2x - 44$, find $m \angle IHG$.

m/RHT= m/GIT

$$X+9=2x-44$$

 $53=X$
 $m/RHT=62°$
 $62°+m/IHG=90°$
 $m/IHG=28°$

36) If RT = 5x + 10 and TG = 7x, find HT.

RT=TG
$$HT=TG$$

 $5x+10=7x$ $HT=7(5)$
 $5=x$ $HT=35$

Quadrilateral SQAR is a square.

37) If QA = 8, what is the length of diagonal \overline{QR} ?

38) If the perimeter of the square is 48 inches, what is *QR*? Give an exact answer.

39) Given quadrilateral STLR with S(2,3), T(5,7), L(8,3), and R(5,-1). What could the name(s) of this quadrilateral be?

Slope of ST and IR is \$\frac{4}{3}\$
slope of TI and RS is -\frac{1}{3}

parallelogram and rhombus